$\mathrm{C}(26)-\mathrm{C}(27)$ bond distances $[1.509$ (5) \AA av.] are normal single bonds. The $\mathrm{C}-\mathrm{C}$ bonds linking the thiophene groups to the $\mathrm{C}=\mathrm{N}$ bonds, e.g. $\mathrm{C}(4)-\mathrm{C}(5)$, are shorter [1.449 (4) \AA av.], indicating that conjugation occurs between the $\mathrm{C}=\mathrm{N}$ and thiophene moieties. Bond distances and angles within the thiophene group are unexceptional, e.g. C-S 1.709 (4) \AA av., C-S-C 91.6 (2) ${ }^{\circ}$ av. Complexation studies of S_{3} tren are underway.

This research was initiated under an operating grant to ECA by the Natural Sciences and Engineering Research Council of Canada.

References

Alyea, E. C., Li, B. L., Xu, Z. \& You, X. Z. (1989). In preparation.
XXVI International Conference on Coordination Chemistry (1988). Book of Abstracts. Porto, Portugal.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kirchner, R. M., Mealli, C., Bailey, M., Howe, N., Torre, L. P., Wilson, L. J., Andrews, L. C., Rose, N. J. \& Lingafelter, E. C. (1987). Coord. Chem. Rev. 77, 89-163.

Meade, T. J. \& Busch, D. H. (1985). Prog. Inorg. Chem. 33, 59-126.
Molecular Structure Corporation (1985). TEXSAN Structure Analysis Package. MSC, 304 Longmire Drive, College Station, TX 77840, USA.

Anticancer Agent Development. 3. X-ray Structure of Dimethyl 1-Methoxy-6,7-methylenedioxy-4-(3,4,5-trimethoxyphenyl)-trans-3,4-dihydronaphthalene-2,3-dicarboxylate

By John R. Peterson,* \dagger Hoang D. Do and Robin D. Rogers*
The Michael Faraday Laboratories, Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 28 December 1988; accepted 14 February 1989)

Abstract

C}_{25} \mathrm{H}_{26} \mathrm{O}_{10}, M_{r}=486 \cdot 48\), monoclinic, $P 2_{1} / n$, $a=13.708$ (6), $b=11.755$ (4), $c=15.491$ (5) $\AA, \beta=$ $108.92(3)^{\circ}, V=2361.3 \AA^{3}, Z=4, D_{x}=1.37 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\operatorname{Mo} K \alpha)=0.71073 \AA, \quad \mu=0.66 \mathrm{~cm}^{-1}, \quad F(000)=$ $1024, T=293 \mathrm{~K}$, final $R=0.051$ for 1884 observed [$\left.F_{o} \geq 5 \sigma\left(F_{o}\right)\right]$ reflections. The 3-methoxycarbonyl group and the 4 -aryl ring occupy quasiaxial positions in the observed structure. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions of note occur in this compound.

Introduction. Synthetic congeners of the American mayapple constituent podophyllotoxin have sparked much interest in recent years as anticancer agents (Beers, Imakura, Dai, Li, Cheng \& Lee, 1988; Jardine, 1980). The epipodophyllotoxin derivatives etoposide and teniposide are two such therapeutically useful preparations (Kaneko \& Wong, 1987; Keller-Juslen, Kuhn, Wartburg \& Stahelin, 1971). The natural products and the synthetic modifications elicit their antineoplastic effect by strikingly different

[^0]mechanisms, however. The natural lignans induce metaphase arrest in dividing cells by reversible binding to tubulin, which in turn disrupts mitotic spindle formation and microtubule assembly (Jardine, 1980; Loike \& Horwitz, 1976). In contrast, etoposide and teniposide neither bind nor inhibit tubulin or prevent microtubule assembly at relevant concentrations. These compounds instead exert their anticancer activity by arresting cell division at the S or G_{2} phase of the cell cycle through an interaction with DNA topoisomerase II (Chow, MacDonald \& Ross, 1988; Kohn, 1987). The latter interaction leads to an inhibition of DNA catenation activity and the production of DNA single- and double-strand breaks. In conjunction with our synthetic investigations on the podophyllotoxins (Peterson, Winter, Do \& Rogers, 1989; Peterson, Do \& Rogers, 1988), we are interested in ascertaining the molecular requirements associated with the specific manifestation of each of the above biological modus operandi. Such knowledge is anticipated to permit the scientifically sound design of new anticancer drugs that are based upon natural product models. Herein we describe the X-ray crystal structure and an analysis of the closest contacts between neighboring molecules in the crystal lattice for dimethyl 1-methoxy-6,7-methylene-
dioxy-4-(3,4,5-trimethoxyphenyl)-trans-3,4-dihydro-naphthalene-2,3-dicarboxylate. The title compound and its congeneric series provide new molecular probes for structure-activity studies with regard to partial aromatization of the natural and epipodophyllotoxin ring systems (Beers et al., 1988).

Experimental. The title dihydronaphthalene was obtained in 95% isolated yield by reaction of dimethyl 1-hydroxy-6,7-methylenedioxy-4-(3,4,5-tri-methoxyphenyl)-trans-3,4-dihydronaphthalene-2,3-
dicarboxylate with ethereal diazomethane at 273 K (Peterson et al., 1989). The product was purified by flash chromatography on silica gel while eluting with 2% acetone in chloroform. Colorless, parallelepiped crystals (m.p. 433-435 K), suitable for X-ray analysis, were obtained by slow recrystallization from chloroform-pentane. The X-ray structure was in full agreement with the spectral and analytical data. Physical data: IR (CHCl_{3}) 2985, 2940, 2920, 2830, $1725,1680,1585,1495,1475,1450,1430,1370,1320$, 1270, 1220, 1190, 1120, 1030, 1000, 925, $725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7 \cdot 19(s, 1 \mathrm{H}), 6 \cdot 64(s$, $1 \mathrm{H}), 6.28(s, 2 \mathrm{H}), 6.00$ (center $A B$ quartet, $J=$ $0.94 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(d, J=2.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(d, J=$ $2 \cdot 42 \mathrm{~Hz}, 1 \mathrm{H}), 3 \cdot 87(s, 3 \mathrm{H}), 3 \cdot 80(s, 3 \mathrm{H}), 3 \cdot 76(s, 3 \mathrm{H})$, $3.75(s, 6 \mathrm{H}), 3.63(s, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $50 \mathrm{MHz}) \delta 173 \cdot 00,166 \cdot 41,162 \cdot 20,153 \cdot 14,149 \cdot 59$, $147 \cdot 51, \quad 137 \cdot 25,137 \cdot 07,133 \cdot 73,124 \cdot 54,109 \cdot 50$, $107 \cdot 60,104 \cdot 93,104 \cdot 84,101 \cdot 60,61 \cdot 42,60 \cdot 75,56 \cdot 08$, $52 \cdot 43,51 \cdot 78,48 \cdot 71,45 \cdot 89$. Analysis: calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{10}: \quad \mathrm{C} 61.73, \quad \mathrm{H} 5.39$; found: C 61.63 , H 5.32%. D_{m} not determined. Crystal $0.30 \times$ $0.40 \times 0.35 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$. Cell constants from setting angles of 25 reflections ($\theta>18^{\circ}$). Correction for Lorentz-polarization effect, no correction for absorption. $\theta_{\text {max }}=46^{\circ} ; h 0$ to $15, k 0$ to $12, l-16$ to 16 . Standard reflections observed every 3600 s of data collection time: $600,060,006$. Variation $= \pm 2 \%$. 3578 reflections measured, 1884 independent observed reflections [$F_{o} \geq 5 \sigma\left(F_{o}\right)$]. Structure solved utilizing MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) direct-methods program. Geometrically constrained H atoms were placed in calculated positions $0.95 \AA$ from the bonded C atom and allowed to ride on that atom with B fixed at $5.5 \AA^{2}$. The methyl \mathbf{H} atoms were located from a difference Fourier map and included with fixed contributions ($B=5 \cdot 5 \AA^{2}$). Scattering factors from International Tables for X-ray Crystallography (1974); structure refined with SHELX76 (Sheldrick, 1976). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, $w=\left[\sigma\left(F_{o}\right)^{2}+0.00006 F_{o}^{2}\right]^{-1}, 316$ parameters varied. $R=0.051, w R=0.051, S=1 \cdot 12 . \Delta / \sigma$ in final least-squares refinement cycle $<0.01, \Delta \rho<0.2$ e \AA^{-3} in final difference map.

Table 1. Final fractional coordinates and equivalent isotropic thermal parameters for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{10}$
$B_{\text {eq }}=\frac{4}{3}\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+a b(\cos \gamma) \beta_{12}+a c(\cos \beta) \beta_{13}+\right.$
ad $\left.b c(\cos \alpha) \beta_{23}\right]$.

	\boldsymbol{X}	y	Z	$\boldsymbol{B}_{\text {eq }}$
O(1)	1.0948 (3)	0.3377 (3)	0.3334 (2)	3.73
O(2)	1.0710 (3)	0.1436 (3)	0.3108 (3)	4.06
O(3)	0.7708 (2)	$0 \cdot 5024$ (3)	$0 \cdot 3811$ (2)	2.47
$\mathrm{O}(4)$	0.4753 (3)	0.3791 (3)	0.3150 (2)	3.93
O(5)	0.5863 (3)	0.4882 (4)	0.4170 (3)	$5 \cdot 18$
O(6)	0.5985 (3)	0.3426 (3)	0.1479 (2)	3.66
O(7)	0.5347 (3)	$0 \cdot 1678$ (3)	0.1368 (2)	3.74
O(8)	0.6512 (3)	-0.1691 (3)	0.4977 (2)	3.95
O(9)	0.6864 (3)	-0.0381 (3)	0.6453 (2)	$2 \cdot 83$
O(10)	0.7435 (3)	0.1786 (3)	$0 \cdot 6440$ (2)	$3 \cdot 55$
C(1)	0.8128 (4)	0.2086 (4)	0.3202 (3)	1.94
C(2)	0.8914 (4)	$0 \cdot 1404$ (4)	$0 \cdot 3104$ (3)	2.44
C(3)	0.9827 (4)	0.1922 (5)	0.3172 (3)	2.60
C(4)	0.9966 (4)	$0 \cdot 3084$ (5)	0.3304 (3)	2.45
C(5)	0.9221 (4)	$0 \cdot 3777$ (4)	0.3405 (3)	2.32
C(6)	0.8278 (4)	$0 \cdot 3254$ (4)	0.3356 (3)	2.00
C(7)	0.7451 (4)	$0 \cdot 3934$ (4)	0.3505 (3)	2.05
C(8)	0.6493 (4)	$0 \cdot 3549$ (4)	0.3325 (3)	2.01
C(9)	0.6216 (3)	0.2397 (4)	0.2864 (3)	2.03
C(10)	0.7119 (3)	0.1544 (4)	0.3170 (3)	1.88
C(11)	0.7148 (4)	0.0998 (4)	0.4075 (3)	2.05
C(12)	0.6863 (4)	-0.0123 (4)	0.4089 (3)	$2 \cdot 50$
C(13)	0.6780 (4)	-0.0587 (4)	0.4885 (3)	$2 \cdot 50$
C(14)	0.6971 (4)	0.0069 (4)	0.5668 (3)	$2 \cdot 20$
C(15)	0.7280 (4)	0.1188 (4)	0.5652 (3)	2.41
C(16)	0.7388 (4)	0.1652 (4)	0.4862 (3)	2.46
C(17)	0.6271 (6)	-0.2399 (5)	0.4189 (4)	$5 \cdot 63$
C(18)	0.5842 (5)	-0.0366 (6)	0.6462 (4)	4.80
C(19)	0.7754 (5)	0.2945 (5)	0.6446 (3)	$4 \cdot 70$
C(20)	0.5794 (4)	0.2446 (4)	0.1822 (3)	2.43
C(21)	0.5556 (5)	0.3522 (5)	0.0491 (3)	4.35
C(22)	0.5698 (4)	0.4169 (4)	0.3589 (3)	2.67
C(23)	0.3928 (4)	0.4282 (6)	$0 \cdot 3426$ (4)	4.82
C(24)	$1 \cdot 1387$ (5)	0.2361 (6)	0.3132 (4)	4.39
C(25)	0.8299 (4)	$0 \cdot 5121$ (4)	0.4772 (3)	$3 \cdot 44$

Discussion. Fractional coordinates and $B_{\text {eq }}$ values are given in Table 1,* bond distances and angles in Table 2, and an ORTEP drawing (Johnson, 1976) in Fig. 1. A cell packing diagram is shown in Fig. 2.

The trans, quasidiaxial stereorelationship between the 3-methoxycarbonyl and 4-aryl groups is apparent upon examination of the ORTEP diagram. Indicative that both substituents indeed occupy quasiaxial positions is the $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)$ torsion angle of -148.7° and the small vicinal hydrogencoupling constant of 2.42 Hz between $\mathrm{C}(10)-\mathrm{H}$ and $\mathrm{C}(9)-\mathrm{H}$. It is important to note the absence of 1,3-quasidiaxial interactions when the molecule adopts this conformation (Ahmed, Lehrer \& Stevenson, 1973; Ayres, 1969).

Several structural alterations were noted when the crystal structure of the title compound was compared with that for its desmethoxy synthetic precursor, dimethyl 1-hydroxy-6,7-methylenedioxy-4-(3,4,5-tri-methoxyphenyl)-trans-3,4-dihydronaphthalene-2,3-

[^1]Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{10}$

$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.37$	$1 \cdot 377$ (6)	$\mathrm{O}(1)-\mathrm{C}(24) \quad 1.4$	1.417 (6)
$\mathrm{O}(2)-\mathrm{C}(3) \quad 1.37$	$1 \cdot 372$ (6)	$\mathrm{O}(2)-\mathrm{C}(24) \quad 1.4$	1.422 (6)
$\mathrm{O}(3)-\mathrm{C}(7) \quad 1.37$	$1 \cdot 372$ (5)	$\mathrm{O}(3)-\mathrm{C}(25) \quad 1.4$	$1 \cdot 451$ (5)
$\mathrm{O}(4)-\mathrm{C}(22) \quad 1-3$	1.328 (6)	$\mathrm{O}(4)-\mathrm{C}(23) \quad 1.4$	1.451 (6)
$\mathrm{O}(5)-\mathrm{C}(22) \quad 1.1$	$1 \cdot 197$ (5)	$\mathrm{O}(6)-\mathrm{C}(20) \quad 1.33$	$1 \cdot 330$ (6)
$\mathrm{O}(6)-\mathrm{C}(21) \quad 1.4$	1.455 (5)	$\mathrm{O}(7)-\mathrm{C}(20) \quad 1.18$	1.185 (5)
$\mathrm{O}(8)-\mathrm{C}(13) \quad 1.3$	1.369 (5)	$\mathrm{O}(8)-\mathrm{C}(17) \quad 1.4$	1.424 (6)
$\mathrm{O}(9)-\mathrm{C}(14) \quad 1.37$	$1 \cdot 378$ (5)	$\mathrm{O}(9)-\mathrm{C}(18) \quad 1.4$	1.406 (6)
$\mathrm{O}(10)-\mathrm{C}(15) \quad 1.3$	1.364 (5)	$\mathrm{O}(10)-\mathrm{C}(19) \quad 1.4$	1.429 (6)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.39$	1.391 (6)	$\mathrm{C}(1)-\mathrm{C}(6) \quad 1.397$	1.397 (6)
$\mathrm{C}(1)-\mathrm{C}(10) \quad 1.50$	1.509 (6)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.36$	1.365 (7)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.38$	$1 \cdot 385$ (7)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.355$	1.355 (6)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.4$	1.412 (6)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.45$	1.465 (7)
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.331$	1.331 (6)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.5$	1.520 (6)
$\mathrm{C}(8)-\mathrm{C}(22) \quad 1.47$	1.474 (7)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.5$	1.544 (6)
$\mathrm{C}(9)-\mathrm{C}(20) \quad 1.52$	1.529 (6)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.53$	1.531 (6)
$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.37$	1.377 (6)	$\mathrm{C}(11)-\mathrm{C}(16) \quad .1 .38$	1.387 (6)
$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.38$	1.386 (6)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.38$	1.388 (6)
$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.3$	1.385 (6)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.3$	$1 \cdot 392$ (6)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(24)$	$105 \cdot 2$ (4)	$\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{C}(24)$	$105 \cdot 3$ (4)
$\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{C}(25)$	115.0 (3)	$\mathrm{C}(22)-\mathrm{O}(4)-\mathrm{C}(23)$	$116 \cdot 1$ (4)
$\mathrm{C}(20)-\mathrm{O}(6)-\mathrm{C}(21)$	$115 \cdot 0$ (4)	$\mathrm{C}(13)-\mathrm{O}(8)-\mathrm{C}(17)$	117.4 (4)
$\mathrm{C}(14)-\mathrm{O}(9)-\mathrm{C}(18)$	$113 \cdot 3$ (4)	$\mathrm{C}(15)-\mathrm{O}(10)-\mathrm{C}(19)$	117.1 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120 \cdot 6$ (5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	119.2 (4)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(10)$	$120 \cdot 2$ (5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.2 (5)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	128.1 (5)	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.8 (5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	122.0 (5)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.7 (5)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	127.7 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	122.5 (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.3 (5)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	121.2 (5)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.0 (5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.7 (4)
$O(3)-C(7)-C(6)$	116.0 (4)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	121.0 (5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.9 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.7 (4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(22)$	122.8 (4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(22)$	118.4 (4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.4 (4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	114.5 (4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)$	109.9 (4)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	111.8 (4)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	113.3 (4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.5 (4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.5 (4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	120.0 (4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	120.3 (4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.7 (4)
$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	124.5 (4)	$\mathrm{O}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	114.6 (4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.8 (4)	$\mathrm{O}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	121.0 (4)
$\mathrm{O}(9)-\mathrm{C}(14)-\mathrm{C}(15)$	120.0 (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119.0 (4)
$\mathrm{O}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	115.7 (4)	$\mathrm{O}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	123.7 (4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.5 (4)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	119.6 (4)
$\mathrm{O}(6)-\mathrm{C}(20)-\mathrm{O}(7)$	$123 \cdot 6$ (5)	$\mathrm{O}(6)-\mathrm{C}(20)-\mathrm{C}(9)$	$113 \cdot 5$ (4)
$\mathrm{O}(7)-\mathrm{C}(20)-\mathrm{C}(9)$	122.9 (5)	$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{O}(5)$	122.3 (5)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(8)$	112.2 (4)	$\mathrm{O}(5)-\mathrm{C}(22)-\mathrm{C}(8)$	125.3 (5)
$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{O}(2)$	109.3 (4)		
$\mathrm{H}(1)[\mathrm{C}(17)] \cdots \mathrm{O}\left(5^{\prime}\right)$	2.28	$\mathrm{C}(17) \cdots \mathrm{O}\left(5^{\text {i }}\right.$)	3.244 (7)
$\mathrm{H}(1)[\mathrm{C}(24)] \cdots \mathrm{H}(1)\left[\mathrm{C}\left(19^{-4}\right)\right]$)] 2.34	$\mathrm{C}(24) \cdots \mathrm{H}(1)\left[\mathrm{C}\left(19^{\text {ju }}\right.\right.$)]	3.00
$\mathrm{H}(1)[\mathrm{C}(24)] \cdots \mathrm{O}\left(10^{\mathrm{ij}}\right)$	2.64	$\mathrm{H}(1) \mathrm{CC}(24)] \cdots \mathrm{C}\left(19^{\text {Mi }}\right.$)	2.84
$\mathrm{H}(1)[\mathrm{C}(19)] \cdots \mathrm{H}(2)\left[\mathrm{C}\left(18{ }^{\text {iii) }}\right)\right]$)] 2.35	$\mathrm{H}(1)[\mathrm{C}(19)] \cdots \mathrm{O}\left({ }^{\text {iت1) }}\right.$)	2.59
$\mathrm{H}(1)[\mathrm{C}(19)] \cdots \mathrm{C}\left(18^{\text {(i4) }}\right.$)	2.75		
$\mathrm{H}(3)[\mathrm{C}(21)] \cdots \mathrm{H}(1)\left[\mathrm{C}\left(25^{\text {²}}\right)\right]$)] 2.35	$\mathrm{O}(7) \cdots \mathrm{H}(1)\left[\mathrm{C}\left(5^{\text {iv }}\right)\right]$	$2 \cdot 51$
$\mathrm{H}(1)[\mathrm{C}(2)] \cdots \mathrm{O}\left(6^{\text {i }}\right.$)	2.68		
$\mathrm{H}(2)[\mathrm{C}(17)] \cdots \mathrm{H}(3)\left[\mathrm{C}\left(18{ }^{7}\right)\right]$)] 2.62	$\mathrm{H}(1)[\mathrm{C}(17)] \cdots \mathrm{H}(1)\left[\mathrm{C}\left(23^{\prime}\right)\right]$)] 2.47
$\mathrm{H}(1)[\mathrm{C}(18)] \cdots \mathrm{H}(1)[\mathrm{C}(18)]$)] 2.65		
$\mathrm{H}(2)[\mathrm{C}(23)] \cdots \mathrm{O}\left(10^{\text {ci }}\right.$)	2.50		
$\mathrm{O}(8) \cdots \mathrm{H}(2)\left[\mathrm{C}\left(24^{\text {rii }}\right)\right]$	2.54	$\mathrm{O}(9) \cdots \mathrm{H}(2)\left[\mathrm{C}\left(24^{\text {rii }}\right)\right]$	$2 \cdot 66$

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $\frac{3}{2}-x, \frac{1}{2}+y$, $\frac{1}{2}-z$; (iv) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $1-x,-y, 1-z$; (vi) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (vii) $2-x,-y, 1-z$.
dicarboxylate (Peterson et al., 1989). The same atomnumbering scheme is utilized for both compounds. Atoms $\mathrm{C}(1)$ through $\mathrm{C}(6), \mathrm{C}(24), \mathrm{O}(1)$ and $\mathrm{O}(2)$ of the title compound describe a plane to within $0.068 \AA$. Atoms $\mathrm{C}(7)$ and $\mathrm{C}(10)$ deviate from this plane by 0.065 and $0.004 \AA$, respectively. Surprisingly, atoms $C(10), C(1), C(6), C(7)$ and $C(8)$ of the title compound define a unique plane to within $0.090 \AA$, with the latter plane intersecting the former at an angle of $2 \cdot 62^{\circ}$. This finding is in contrast to the 1-hydroxy precursor where atoms $\mathrm{C}(1)$ through $\mathrm{C}(8)$, $\mathrm{C}(10), \mathrm{C}(24), \mathrm{O}(1)$ and $\mathrm{O}(2)$ collectively lie in a plane. The dihydronaphthalene B ring of the title
compound puckers about atom $\mathrm{C}(9)$ to relieve steric interactions between the $\mathbf{C}(20)$ and $\mathrm{C}(22)$ methoxycarbonyl groups. The $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ torsion angle of -43.9° and the $0.526 \AA$ deviation of atom $\mathrm{C}(9)$ from the $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ plane support this observation. Atom plane C(7), $\mathrm{C}(6), \mathrm{C}(8)$ and $\mathrm{O}(3)$ intersects the $\mathrm{C}(10)-\mathrm{C}(1)-$ $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ plane at an angle of $10 \cdot 77^{\circ}$, and carbonyl atom $\mathrm{C}(22)$ lies $-0.195 \AA$ out of the $\mathrm{C}(7)$, $\mathrm{C}(6), \mathrm{C}(8)$ and $\mathrm{O}(3)$ plane of the title compound. This is again in contrast to the 1 -hydroxy precursor where planarity is observed for atoms $\mathrm{C}(7), \mathrm{C}(8)$, $C(22), O(5)$ and $O(3)$ to within $0.007 \AA$. Finally, the pendant aryl-ring atoms, $\mathrm{C}(11)$ through $\mathrm{C}(16)$, of the title compound describe a plane to within $0.019 \AA$.

Fig. 1. Thermal-ellipsoid plot of the title compound showing the atom-numbering scheme. The H -atom radii are arbitrarily reduced.

Fig. 2. Cell-packing diagram of the title compound.

This plane intersects the B ring plane, comprised of atoms $\mathrm{C}(10), \mathrm{C}(1), \mathrm{C}(6), \mathrm{C}(7)$ and $\mathrm{C}(8)$, at an angle of 72.70°. The latter angle is substantially smaller than that observed in the 1-hydroxy precursor, where the pendant aryl ring was nearly perpendicular (88.0°) to the dihydronaphthalene ring plane. These pronounced structural changes of the title compound in comparison to its 1 -hydroxy precursor are most easily explained by the disruption of the strong hydrogen bond between O atoms $\mathrm{O}(3)$ and $\mathrm{O}(5)$ in the latter.

An analysis of the closest intermolecular contact distances reveals that van der Waals forces are likely to be the dominant stabilizing force in the crystal lattice of the title compound. Several such interactions were noted to occur between neighboring molecules and the shortest of these have been tabulated with their symmetry relationships in Table 2.

In conclusion, several topographical alterations are found between the title compound and its 1hydroxy precursor as a result of simple methyl substitution for an H atom. The capacity of a podophyllotoxin analogue to bind to tubulin or to trap a DNA-topoisomerase II complex is dramatically affected by what often appear to be minor chemical modifications (Chow et al., 1988; Kohn, 1987; Jardine, 1980; Loike \& Horwitz, 1976). Extensive chemical, structural and biological investigations of these and other podophyllotoxin derivatives are now in progress in our laboratories to ascertain the molecular requirements associated with these biological modes of action.

The authors are greatly indebted to the Elsa U. Pardee Foundation (JRP), the Milheim Foundation for Cancer Research (JRP, grant No. 87-32), the American Cancer Society, Illinois Division, Inc., (JRP, grant No. 87-53), and to the Donors of the

Petroleum Research Fund (JRP and RDR), administered by the American Chemical Society for their generous support of this research. The US National Science Foundation's Chemical Instrumentation Program provided funding to purchase the diffractometer.

References

Ahmed, R., Lehrer, M. \& Stevenson, R. (1973). Tetrahedron, 29, 3753-3759.
Ayres, D. C. (1969). Can. J. Chem. 47, 2075-2080.
Beers, S. A., Imakura, Y., Dai, H.-J., Li, D.-H., Cheng, Y.-C. \& Lee, K.-H. (1988). J. Nat. Prod. 51, 901-905.
Chow, K.-C., Macdonald, T. L. \& Ross, W. E. (1988). Mol. Pharmacol. 34, 467-473.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jardine, I. (1980). Anticancer Agents Based on Natural Product Models, edited by J. M. Cassady \& J. D. Douros, pp. 319-351. New York: Academic Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kaneko, T. \& Wong, H. (1987). Tetrahedron Lett. 28, 517-520.
Keller-Juslen, C., Kuhn, M., Wartburg, A. \& Stahelin, H. (1971). J. Med. Chem. 14, 936-940.

Korn, K. W. (1987). Concepts, Clinical Developments, and Therapeutic Advances in Cancer Chemotherapy, edited by F. M. Muggia, pp. 3-38. Boston: Martinus Nijhoff.
Loike, J. D. \& Horwitz, S. B. (1976). Biochemistry, 15, 54355443 and 5443-5448.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). Multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Peterson, J. R., Do, H. D. \& Rogers, R. D. (1988). Acta Cryst. C44, 1786-1789. [Paper \# 1 in present series.]
Peterson, J. R., Winter, T. J., Do, H. D. \& Rogers, R. D. (1989). J. Cryst. Spectrosc. Res. 19, 135-145. [Paper \#2 in present series.]
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination, locally modified. Univ. of Cambridge, England.

Acta Cryst. (1989). C45, 1571-1573

Structure of Methyl 5-Phenyl-2-propionyl-3-pyrrolecarboxylate

By M. Nethail, Vasantha Pattabhi* and V. G. Thallambal
Department of Crystallography and Biophysics, \dagger University of Madras, Guindy Campus, Madras-600 025, India

(Received 22 July 1988; accepted 22 February 1989)

> Abstract. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}, M_{r}=257 \cdot 4$, monoclinic, $P 2_{1} / n$, $a=10 \cdot 070(2), \quad b=5 \cdot 335(3), \quad c=24 \cdot 23(1) \AA, \quad \beta=$

[^2]$91.60(3)^{\circ}, V=1301(2) \AA^{3}, Z=4, D_{m}$ (flotation) $=$ 1.312 (3) $, D_{x}=1.314 \mathrm{~g} \mathrm{~cm}^{-3}, \operatorname{Cu~} \operatorname{Ko}(\lambda=1.5418 \AA)$, $\mu=6.64 \mathrm{~cm}^{-1}, F(000)=544, T=295 \mathrm{~K}$, final $R(F)$ $=0.037, w R=0.035$ for 850 significant reflections, $I \geq 2 \cdot 5 \sigma(I)$. The phenyl ring and the pyrrole ring are

[^0]: *Authors to whom correspondence should be addressed.
 \dagger Current address: Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.

[^1]: * Lists of structure factors, anisotropic thermal parameters, least-squares-planes results, torsion angles, and final fractional coordinates for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51947 (11 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed. \dagger DCB contribution No. 738.

